If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-130=0
a = 2; b = 6; c = -130;
Δ = b2-4ac
Δ = 62-4·2·(-130)
Δ = 1076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1076}=\sqrt{4*269}=\sqrt{4}*\sqrt{269}=2\sqrt{269}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{269}}{2*2}=\frac{-6-2\sqrt{269}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{269}}{2*2}=\frac{-6+2\sqrt{269}}{4} $
| 3(8+-2y)+6y-12=0 | | m+4m+m+9=57 | | –8(–5+4m)= | | x+20/x+4=10/7 | | (5x-8)/3=4x | | z–9+ 55=46 | | Y=1/5=-6(x+7) | | 230m=1268 | | 7/x+4=10/x+20 | | 3(32)+4y=8 | | 9x-9=8x=4 | | -15=7+x/3 | | 14x+3=5x+31 | | 7k-10=5 | | -7p^2=448 | | 5x-8/3=4x | | -7p^2=48 | | 6c-2=118 | | 18j-3j-10j=15 | | (0.10)(0.5)+35g=0.15(g+0.5) | | 3x-10=2x=15 | | y-100+y=12 | | x/11+2=6 | | 5b-2b=-3 | | 2(12)+y=16 | | 8x+7=-4-8 | | -3(x-3)=-3(x+4) | | 36^5x-2=(1/216)^-9x+7 | | 31=3+6x-2 | | 5^x=0.0001 | | (3a-20+2a)=180° | | 3+2{6x+5}=61 |